
SAC: A Co-Design Cache Algorithm for Emerging
SMR-based High-Density Disks

Diansen Sun

Key Laboratory of Data Engineering and Knowledge

Engineering, MOE, China

School of Information, Renmin University of China

Beijing, China

dssun@ruc.edu.cn

Yunpeng Chai

Key Laboratory of Data Engineering and Knowledge

Engineering, MOE, China

School of Information, Renmin University of China

Beijing, China

ypchai@ruc.edu.cn

Abstract
To satisfy the huge storage capacity requirements of big

data, the emerging high-density disks gradually adopt the

Shingled Magnetic Recording (SMR) technique. However,

the most serious challenge of SMR disks lies in their weak

fine-grained random write performance caused by the write

amplification inner SMRs and its extremely unbalanced read

and write latencies. Although fast storage devices like Flash-

based SSDs can be used to boost SMR disks in SMR-based

hybrid storage, the optimization targets of existing cache

algorithms (e.g., higher popularity for LRU, lower SMR write

amplification ratio for MOST) are NOT the crucial factor

for the performance of the SMR-based hybrid storage. In

this paper, we propose a new SMR-Aware Co-design cache

algorithm called SAC to accelerate the SMR-based hybrid

storage. SAC adopts a hardware/software co-design method

to fit the characteristics of SMR disks and to optimize the cru-

cial factor, i.e., RMW operations inner SMR disks, effectively.

Furthermore, SAC also makes a good balance between some

conflicting factors, e.g., the data popularity vs. the SMR write

amplification and clean cache space vs. dirty cache space. In

our evaluations under real-world traces, SAC achieves a 7.5×

performance speedup compared with LRU in the write-only

mode, and a 2.9× speedup in the read-write mixed mode.

CCS Concepts • Information systems→Hierarchical
storage management.

Keywords cache algorithm; SMR; hybrid storage; write am-

plification

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00

https://doi.org/10.1145/3373376.3378474

ACM Reference Format:
Diansen Sun and Yunpeng Chai. 2020. SAC: A Co-Design Cache

Algorithm for Emerging SMR-based High-Density Disks. In Proceed-
ings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (AS-
PLOS ’20), March 16–20, 2020, Lausanne, Switzerland. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3373376.3378474

1 Introduction
The global data volume is estimated to reach 175 ZB in 2025

according to IDC [15]. The rapidly accumulating amount

of data places high demands on the capacity scalability and

cost-effectiveness of storage devices, so magnetic recording

devices remain strong competitors for maintaining big data.

However, conventional magnetic recording (CMR) disks have

reached the upper bound of their storage density. The next-

generation high-density disks have to adopt some emerging

high-density technologies like Shingled Magnetic Record-

ing (SMR) [3], Bit Patterned Magnetic Recording (BPMR)

[21], Heat Assisted Magnetic Recording (HAMR) [22], and

Microwave-Assisted Magnetic Recording (MAMR) [28], pro-

moting the magnetic recording density to 10T 𝑏𝑖𝑡/𝑖𝑛2 and
more [19].

Among these new techniques, SMR, which squeezes more

tracks of platter like the overlapped shingles on a roof to

promote the storage density, is the most mature, and all the

other techniques are also likely to be applied coupled with

SMR. Practical SMR drive products have been released [17,

18]; they have lower prices and larger capacities compared

with CMR disks. For example, Pelican [2] packs 1,152 SMR

disks in one 52U rack, reaching a total capacity up to 5 PB.

Dropbox has deployed hundreds of petabytes of SMR disks

in their online storage service [4].

However, as a side effect of high storage density, SMR

drives have an inherent problem of write amplification when

processing random writes, which makes SMR drives exhibit

extremely unstable and low performance for random writes.

That is why SMR drives are often used as archive disks in

many corporations. For example, shown as Fig. 1, according

to our measurements of 4KB randomwrites in a logical block

address (LBA) range of 1TB, the bandwidth of a Seagate 8TB

SMR HDD severely jittered between 38KB/s and 2000KB/s,

Session 12A: Storage — Cache is the
answer, what is the question?

1047

https://doi.org/10.1145/3373376.3378474
https://doi.org/10.1145/3373376.3378474
https://www.acm.org/publications/policies/artifact-review-badging#functional
https://www.acm.org/publications/policies/artifact-review-badging#available

while the bandwidth of a 5TB CMR in a comparative test

swings slightly around 830KB/s.

10 20 30 40 50
Time Elapsed (sec)

0

500

1000

1500

2000

B
an

d
W

id
th

(K
B

/s
)

CMR
SMR

Figure 1. Real-time bandwidth of SMR vs. CMR disks when

performing random writes.

Although deploying some fast storage devices (e.g., Flash-

based SSDs [6, 13, 16]) as the cache layer upon disks is usu-

ally an effective solution to boost the hybrid storage’s per-

formance, existing cache algorithms cannot achieve good

performance for the SMR-based hybrid storage due to the

serious write amplification challenge of SMR disks. For exam-

ple, traditional cache algorithms like LRU, LIRS [7], ARC [12]

aim to optimize the cache hit ratios, but never consider the

SMR characteristics at all, usually leading to very large write

amplification rates and low performance. On the contrary,

the existing algorithms that only aims to reduce SMR write

amplification, e.g., MOST [11], have too high cache miss and

excessive SMR I/Os due to ignoring the data popularity.

In this paper, therefore, we propose an SMR-aware Co-

design (SAC) cache algorithm specially for the SMR-based

hybrid storage. SAC achieves 2.9 ∼ 7.5 times higher overall

performance compared with the classical LRU algorithm ac-

cording to the evaluations based on real-world enterprise

traces, and SAC also outperfoms MOST for 1.4 ∼ 1.5 times.

That is because SAC has three important advantages to pro-

mote the performance of the hybrid storage compared with

existing cache algorithms:

1) SAC adopts a hardware/software co-design method to

fit the characteristics of SMR disks and reduces the SMRwrite

amplification effectively. Furthermore, a universal method

of detecting the important hidden features of drive-managed

(DM) SMR disks are also given (see Section 5).

2) Different with the algorithms that only focus on opti-

mizing cache hit rates (e.g., LRU) or SMR write amplification

rates (e.g., MOST), SAC is designed to lower the number of

the heaviest inner operations of SMR, i.e., RMWs, which is

the crucial factor of the SMR-based hybrid storage’ perfor-

mance.

3) Aiming at the significant and unstable performance

gap between SMR disk read and write, SAC introduces a

functional module that dynamically balances cache resources

occupied by clean and dirty data blocks. More importantly,

the function module can be independent and can be used in

combination with other cache algorithms (such as MOST) to

improve their performance.

The rest of this paper is organized as following. In Section

2, we introduce the background knowledge of SMR disks and

the new challenges brought by them for the cache algorithms

in SMR-based hybrid storage. And then we analyze and give

three principles for designing efficient SMR-oriented cache

algorithms in Section 3. Section 4 presents the detailed design

of our proposed SMR-aware co-design (SAC) cache algorithm

and the methods of detecting some important SMR hardware

specifications are explained in Section 5. Subsequently, we

evaluate SAC and some other representative algorithms in

Section 6. The related work and the conclusion can be found

in Section 7 and Section 8, respectively.

2 Background and Challenges
2.1 Write Amplification Challenge of SMR Disks
In order to increase the storage density, SMR drives reduce

the width of disk tracks by squeezing the tracks into a pattern

that overlaps each other (similar to roof shingles [3]). How-

ever, the write heads of disks are wider than the squeezed

track and the read heads, so writing data into an SMR drive

will erase the data on adjacent tracks [1]. Therefore, as shown

in Fig. 2, to deal with the data interference and avoid updat-

ing nearly the whole disk space, modern SMR disks usually

contain two separate areas on the disk, i.e., the band region
and the persistent buffer (PB) region.

Figure 2. The RMW process in SMR drives.

In the band region, some adjacent squeezed tracks belong

to one band, and each band is separated from others through

some guard space. It means that the data in a band will not

be interfered by other band’s write operations. However,

because the tracks in a band are squeezed, when we want

to modify some data within a band, even just one sector,

the entire band has to be rewritten, leading to serious write
amplification (WA) phenomenon and very low performance

of writing. This feature is very unfriendly for the fine-grained

random writing.

The persistent buffer (PB) region is usually located at the

outer tracks, and it temporarily stores the copies of recently

written data in the form of circle-logging. When the persis-

tent buffer is almost full, a garbage collection process forces

a portion of the buffered data to be written back to the band

region to free up some space in PB. The garbage collection

process is formed by some Read-Modify-Write (RMW) op-
erations. Each RMW operation first loads the data of one

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1048

entire band into memory, and then modifies the related parts

according to the data blocks loaded from PB which locates

in this band. Finally, the new version of this band in memory

will be written back into the SMR band region, shown as Fig.

2.

The most performance difference between SMR and con-

ventional magnetic recording (CMR) disks lies in the heavy

RMWoperations, which are usually themost time-consuming

operations in SMR. Once the persistent buffer cannot accu-

mulate enough data blocks located in the same band when

performing writing back, the write amplification rate for the

triggered RMW operation is large, leading to very limited

write performance.

2.2 Challenges of Existing Cache Algorithms
Except for some sequential writing-dominated scenes like

logging, in many other applications, we cannot directly em-

ploy SMR disks due to its extremely poor performance of

random writing. Therefore, a common-sense method is to

employ a faster storage device (e.g., Flash-based SSDs) as

the cache layer of SMR disks, to remedy the shortcomings of

SMR. Existing cache algorithms in a hybrid storage system

can be divided into two categories: the traditional popularity-

driven cache algorithms (e.g., LRU, etc.) and the WA-driven

algorithms specially designed for SMR (e.g., MOST [11]).

TraditionalCacheAlgorithms usuallywrite back blocks

from the SSD cache layer to SMR disks according to the popu-

larity which can be quantified by blocks’ recency (e.g., LRU),

frequency (e.g., LFU), access intervals (e.g., LIRS [7]), or their

mixture (e.g., LRFU [9], ARC [12], and MQ [27]). For the

SSD-SMR hybrid storage, however, these classical cache al-

gorithms always lead to poor performance, because these

evicted unpopular data written to PB may belong to too

many bands, resulting in severe write amplification.

In order to exhibit this intuitively, we performed the Mi-

crosoft Research Cambridge workloads [14] on an accurate

SMR emulator developed by us (see Section 6.1 for more).

Fig. 3 gives the SMR write amplification rate results of the

experiments when performing the workloads on an SMR

only, and an SSD-SMR hybrid storage coupled with LRU and

MOST, respectively. The results indicate that the SMR-only

solution leads to write amplification rates between 23 ∼ 55

under these practical enterprise I/O workloads. And setting

an SSD cache layer coupled with LRU cannot reduce the SMR

write amplification rates; on the contrary, LRU causes larger

write amplification rates under seven of the ten traces. For

example, in rsrch, the write amplification rate of SMR-only

is 49 whereas LRU aggravates it to 107.

SMR-oriented Cache Algorithms. MOST [24] is an-

other extreme cache algorithm specifically designed for SMR.

Not considering the data popularity at all, as Fig. 4 depicts,

MOST always select the band that contains the most dirty

blocks in the cache layer, and then evict all the cached blocks

located in this band all at once.

src
wdev hm

m
ds

pr
n

rsr
ch st

g ts usr
web

0

20

40

60

80

100

A
ve

ra
ge

W
ri

te
A

m
pl

ifi
ca

ti
on

31

41 41

25 26

49
55

43

23

32
37 37 38 35

22

107

74 74

43

54

2 1
5

1 4 1 2 2 2 4

SMR-only LRU MOST

Figure 3. Average write amplification ratios of SMR-only

and different cache algorithms under Microsoft traces.

SMR Band Region

Cached Band Blocks

Band A Band B Band C Band D Band E

chosen to write back

Figure 4. Principle of the MOST scheme.

As the previous Fig. 3 shows,MOST can effectively decline

the write amplification rates to 1 ∼ 5, much lower than SMR-

only and LRU. However, the cache miss rate results in Fig. 5

also indicate that MOST leads to much more cache misses

than LRU, because data popularity is never considered in

MOST. More cache misses will also lead to more SMR writes

and more RMW operations.

src
wdev hm

m
ds

pr
n

rsr
ch st

g ts usr
web

0

10

20

30

40

50

C
ac

he
M

is
s

R
at

io
(%

)

23

6

32

4

39

2 2
5

8

15

27

17

46

15

56

15

19 18

23
26

LRU MOST

Figure 5. The MOST scheme causes more cache misses.

In fact, MOST weakens the main function of the cache

layer, i.e., reducing I/O accesses by maintaining hot data.

It is not advisable to abandon data popularity totally and

only consider the write amplification factor. An ideal cache

algorithm for SMR should make a good balance between the

two factors of the cache hit rate and the write amplification.

3 Principles for Designing Efficient
SMR-oriented Cache Algorithms

SMR drives adopt new internal designs to achieve high stor-

age density, but bring the serious write amplification prob-

lem. Existing cache algorithms (e.g., LRU, MOST, etc.) cannot

make the cache layer support the underlining SMR disks

well. They do not make a good balance between the data

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1049

popularity and the SMR write amplification, and do not con-

sider the distinctive hardware design of SMR disks. In order

to design appropriate cache algorithms for SMR disks, in

this section, we analyze the principles of designing a specific

cache algorithm optimized for SMR disks.

Principle #1. Hardware/Software Co-Design to Reduce
SMRWrite Amplification
The internal hardware design (e.g., the shingled tracks,

bands, PB, and RMW operations) of SMR disks is much more

complicated compared with CMR disks. Therefore, if we do

not consider the SMR hardware specification and put the

write requests directly into SMR disks, the write amplifi-

cation ratios may be up to tens of or even more than one

hundred times (recall the results in Fig. 3).

In consequence, an ideal cache algorithm for SMR drives

should exactly know the important internal hardware spec-

ifications, such as the band size and the persistent buffer

capacity. (1) If we are aware of the sizes of all the bands, we

can know the located SMR band of each cached block. Similar

to MOST, thus, we can put the blocks of the same band to-

gether to reduce the additional I/Os when performing RMW

operations. (2) The PB capacity is also very important. On

one side, PB can accumulate as many cached blocks located

in the same band as possible to reduce the write amplifica-

tion; on the other side, if we cannot utilize PB well, some

written data may become the fragment to trigger large SMR

write amplification rates.

As Fig. 6 (a) plots, in fact, the existence of PB relaxes the

time of writing the blocks from the same band into an SMR

disk to get a small write amplification rate, unlike MOST,

which has to write these blocks all at once into an SMR disk.

Therefore, among these blocks, some hot ones can be kept in

the upper cache layer for a longer time to gain more cache

hits.

Figure 6. Benefits of PB and Truncated Fragmentation.

However, if we do not know the capacity of PB and make

the blocks from the same band too far away from each other,

some of them cannot be involved in one round of PB garbage

collection (i.e., the RMW operation). Taking the case shown

in Fig. 6 (b) as an example, data blocks 𝑎, 𝑏, 𝑐1, and 𝑐2 locate

on the same band of an SMR disk. When 𝑐1 has just been

written into PB, PB is full and an RMW operation is triggered

to release the space of PB. In this case, the blocks 𝑎, 𝑏, and 𝑐1
are involved into the RMW operation, but 𝑐2 has not entered

PB, which means 𝑐2 will trigger another RMW operation

and may lead to large write amplification rate in the future.

This phenomenon is calledTruncated Fragmentation. The
algorithms without the knowledge of PB, including MOST,

may trigger great write amplification sometimes due to the

truncated fragmentation.

Principle #2. RMW-oriented Tradeoff between Popu-
larity and Write Amplification
Only considering popularity (e.g., LRU) or write amplifi-

cation (e.g., MOST) cannot lead to satisfactory performance

for the SMR-based hybrid storage, because none of them is

a decisive factor in the performance of the hybrid storage.

We reasonably assume that the RMW triggering number is
the most critical measure of the performance as it is always

the most time-consuming behavior in SMR regardless of

how big the write amplification is. Therefore, if reducing

the number of RMW triggers, the total I/O time could be

shortened.

For verifying this, we conducted a set of emulation experi-

ments where we run 125 million requests of each Microsoft’s

workload to detect which factor including miss rates, WA

rates, RMW triggering number is more relative to the per-

formance of an SSD-SMR hybrid storage system. In the re-

sults analysis, we utilize Pearson Correlation Coefficients

(𝑃𝐶𝐶) [23] to measure the relativity between the factor and

I/O time; higher 𝑃𝐶𝐶 means it is more relative. As Table 1

shows, the miss ratio and the write amplification ratio both

have a 𝑃𝐶𝐶 lower than 0.5. However, the number of RMWs

triggered in our emulated SMR disk is strongly related to

the system performance, i.e., 𝑃𝐶𝐶 = 0.82. This is a good

news that the RMW count is a quantitative metric to make

a good balance between popularity and write amplification

for the SMR-based hybrid storage. An ideal cache algorithm

for SMR should reduce the RMW count as many as possible.

Table 1. Correlation with SMR I/O time

Trace Time(sec) Miss ratio(%) WA RMWs

src 673 86.1 4.4 1784

wdev 470 43.6 13.2 2403

hm 960 57.6 9.9 5792

mds 354 36.1 9.9 1598

prn 928 66.1 4.4 4377

rsrch 894 47.7 55.5 6677

stg 700 51.7 32.4 4442

ts 684 45.1 27.4 4520

usr 488 36.6 13.1 2778

web 710 37.2 16.3 5022

PCC 0.47 0.24 0.82
(PPC: Pearson correlation coefficient[23])

Principle #3. Dynamically Balancing Clean and Dirty
Cache Segments.

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1050

Traditional cache algorithms usually manage clean and

dirty blocks according to the same popularity indicator (e.g.,

LRU put them in one queue), because the underlying disk

has similar performance for the read and the write requests.

However, this mechanism does not work for SMR, because

the writing overhead in SMR disks is much different com-

pared with reading. On one side, random writes on SMR

disks usually cause background RMW operations and signif-

icant write amplification, and the write amplification rates

are extremely unstable. On the other side, random writes

are turned into sequential writes into the persistent buffer,

while the random reads still cause the random movements

of the disk heads. Therefore, it is hard to tell the practical

performance difference between SMR reading and writing

operations.

As Table 2 plots, the relative standard deviation (RSD) of

write bandwidth of SMR disks is up to more than 800% in

the random I/O pattern, while that of CMR drives is small

(i.e., 11.1%).

Table 2. SMR’s read and write bandwidth (KB/s).

Random Read Random Write

Avg. Stdev. RSD Avg. Stdev. RSD

CMR 247.5 15.2 6.1% 588.8 65.3 11.1%
SMR 373.7 24.8 6.6% 124.2 1080.1 869.6%

Workload: uniformly random I/O, 4KB block size, LBA range
from 0 to 10GB.

Therefore, we need to dynamically balance the cache ca-

pacity occupied by the clean and the dirty blocks, considering

both the popularity and the real-time performance difference

between SMR writing and reading.

Summary. Among the three principles for designing

SMR-oriented cache algorithms, the first and the second ones

aim to optimize the dirty cache part management, and the

last one is proposed for adjust the cache resource allocation

between the clean and the dirty cache appropriately.

4 Algorithm Design of SAC
Motivated by the above three principles, we propose a new

SMR-aware co-design cache algorithm called SAC. Section

4.1 gives an overview of our proposed SAC algorithm, and

the following three parts present the three key components

of SAC, respectively (see Section 4.2, 4.3, and 4.4).

4.1 Overview
The architecture of our proposed SAC algorithm is illustrated

as Fig. 7. First, in SAC, the cached clean and dirty data are

managed independently according to different schemes. The

cached clean blocks are sorted in an LRU queue, but the dirty

data management is much more complicated, with some

additional rules based on a basic LRU queue. Second, SAC

contains three key components, i.e., Cycle-Driven Write-

back (CDW), Target Bands Selection (TBS), and Clean/Dirty

Comparator (CDC). CDW and TBS are used to manage the

dirty cache, while CDC is employed to make a good balance

between the clean and the dirty cache.

Figure 7. Architecture of SAC.

• Motivated by the above Principle #1, CDW fully con-

siders SMR drives’ inner structure of PB and bands and

reduces the SMR write amplification rates effectively

through a cycle-driven writeback manner.

• Cooperated with CDW, the TBS module aims to limit

the evicted victims’ located bands to a small range,

and selects the most appropriate blocks within these

bands for eviction, in order to reduce the triggered

RMW counts motivated by Principle #2.
• According to Principle #3, we should dynamically bal-

ance the clean and the data cache segments based on

real-time SMR write performance and data popularity.

The CDC module compares the eviction cost of these

two cache parts periodically and determines to evict

clean or dirty blocks in a period, resulting to balance

the two cache regions.

4.2 Cycle-Driven Writeback
Unshaped SMR written data stream usually makes PB con-

tain data blocks from too many bands and too large write am-

plification when performing RMWs, or triggers the truncated
fragmentation problem (see Section 3). We therefore propose

a new Cycle-Driven Writeback (CDW) approach which can

shape the SMR written data’s I/O pattern to avoid above

problems.

The cycle here means a series of conditional operations

on the cache eviction. In one cycle, only a limited number

of cache blocks belonging to certain ‘qualified’ bands are

allowed to write back to SMR. The total size of cache blocks

that the cycle is allowed to evict is called cycle length, and is
typically a fixed size for the workload. The ’qualified’ bands

referred to as Target Bands are re-selected at the beginning
of each cycle, and the issue about the target bands selection

will be handled by another module of SAC, i.e., Target Bands
Selection (see Section 4.3).

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1051

As Fig. 8 plots, the SMR written data stream enters and

gets out of PB. If cycle B is the current cycle and the previous

cycle is cycle A, PB may contain the data written during cycle
A and cycle B. In this case, when the PB garbage collection

is triggered, only data blocks located in Target Bands A and

Target Bands B may be involved in the RMW operations.

That is to say, limited band number leads to less RMWs and

smaller write amplification rates.

Figure 8. Schematic diagram of Cycle-Driven Writeback.

The detailed method of CDW includes the following rules:

Rule 1. In each cycle, only a limited number of target

bands are selected for SMR writeback, and the total

size of these bands must NOT exceed the PB capacity.

The method of how to get the accurate PB capacity for

device-managed SMR drives will be discussed later in

Section 5.1.

Rule 2. The cycle length should not beyond the PB ca-

pacity; otherwise, PB cannot hold all the blocks of the

too long cycle, leading to truncated fragmentation. The
impacts of the cycle length are evaluated in this paper

and can be found in Section 6.5.

Rule 3. A cycle should be endedwhen there are no blocks

of the selected target bands in the upper cache layer

that can be written back to SMR. Then, start a new

cycle.

Rule 4. All active cycles (i.e. not be GC in the PB) should

not overlap in the selection of the target bands. Oth-

erwise, the truncated fragmentation will occur across

the overlapped cycles.

Rules 1 to 3 prevent truncated fragmentation from occurring

in a single cycle, and also the fragmentation will not occur

across the cycles according to Rule 4.

4.3 Target Bands Selection
The target bands selection (TBS) module is designed to make

a good balance between the popularity and the SMR write

amplification through restricting the cache victim candidates

to the cache blocks located on some appropriate SMR bands.

Recall Principle #2 in the above section and Table 1 that the

balance point lies in minimizing the RMW operation counts

inner SMR disks. Therefore, what kind of bands should be

selected to reduce the RMW triggering time the most?

Illustrated as Fig. 9, if PB can release the as much space as

possible when performing an RMW operation, which flushes

all the blocks of one band (e.g., 𝐵𝑖) from PB to the SMR band

region, less RMW operations are required. Note that some

of the blocks in 𝐵𝑖 may be accessed and appear in PB again

in the near future. So we should pursue the band that can

actually release the most space, i.e., few blocks of the band

should re-enter PB to occupy its space. Furthermore, because

the data of PB all comes from the eviction of the upper cache

layer, the target bands of the cache layer, which are allowed

to evict data to PB, also should be the ones that can actually
release the most PB space.

Figure 9. TBS chooses the bands with the largest actually

released cache space to minimize RMW counts.

The Actually Released cache Space (ARS) of one band 𝐵𝑖
can be calculated according to the following Eq. 1, where

𝑆𝑖 = {𝑥 |𝑥 ∈ 𝐵𝑖 𝑎𝑛𝑑 𝑥 ∈ 𝑐𝑎𝑐ℎ𝑒} is the collection of blocks

which belong to band 𝐵𝑖 and are currently cached in the

dirty cache, and the 𝑃 (𝑥) is the probability of the block 𝑥

being accessed again after we write back it to SMR. Note

that 𝐴𝑅𝑆 of 𝐵𝑖 indicates the count of cached blocks, which

has the same size.

𝐴𝑅𝑆 (𝐵𝑖) = |𝑆𝑖 | −
∑
𝑥 ∈𝑆𝑖

𝑃 (𝑥) (1)

According to the massive classical cache algorithms (e.g.,

LRU, LFU, LIRS, etc.), there are many ways to estimate 𝑃 (𝑥),
such as through the recency, the frequency, or the access

intervals. In this paper, we adopt a simple and effective one

similar to LRU. In SAC, the cached blocks, whose last access

time is older than a threshold, are considered as cold blocks

that will not be accessed again in the near future. And the

other cache blocks are hot ones, and will enter the cache

again.

The experimental results (§6.2) indicate that, in coopera-

tion with CDW, the ARS-based target band selection method

reduces the RMW triggering number by more than 50% com-

pared to MOST.

4.4 Clean/Dirty Comparator
CDC aims to adjust the occupied cache resources (i.e., the

cache space) of the clean and the dirty blocks dynamically

by considering both the popularity and the real-time perfor-

mance gap between SMR reading and writing. The method

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1052

that CDC adopts is to determine evicting a certain number of

dirty blocks or clean blocks, by comparing the cost of evict-

ing these clean or dirty blocks periodically. Here we compare

two groups of blocks, but not only two blocks, i.e., the worst

clean block and the worst dirty one. The reason lies in that

the popularity and the SMR performance measurement for

a group of blocks is much more accurate than measuring a

single block.

Here, the cost of block eviction is defined as the consumed

SMR working time for actually releasing the unit of cache

capacity. Between the clean and the dirty block groups, we

should choose the group with smaller cost as the cache vic-

tim, because this means less performance loss to release

the same cache capacity. First, the actually released cache

capacity, in fact, puts the data popularity into the consid-

eration, because it is equal to the evicted blocks that will

not be accessed in a long time. For example, after we have

evicted 10 blocks, four of them entered the cache again in a

future time window, so the actually released cache space is 6

blocks. Second, we choose the consumed SMR working time

as the performance loss indicator because SMR is usually the

performance bottleneck of the hybrid storage and it cannot

work in parallel due to the disk head limit.

Specifically, the set of the worst clean blocks is denoted

as 𝑆𝑐𝑙𝑒𝑎𝑛 and that of the worst dirty blocks is 𝑆𝑑𝑖𝑟𝑡𝑦 . The cost

model of each set is generally formulated as the Eq. 2, where

𝑆𝑡 is 𝑆𝑐𝑙𝑒𝑎𝑛 or 𝑆𝑑𝑖𝑟𝑡𝑦 , 𝑇𝑖𝑚𝑒 (𝑆𝑡) is the consumed SMR time

for processing the evicted blocks, and 𝐴𝑅𝑆 (𝑆𝑡) is actually
released cache space of 𝑆𝑡 (see Section 4.3 and Eq. 1).

𝐶𝑜𝑠𝑡 (𝑆𝑡) =
𝑇𝑖𝑚𝑒 (𝑆𝑡)
𝐴𝑅𝑆 (𝑆𝑡)

(2)

Estimation of the consumed SMR time cost. For evict-
ing clean blocks, we just drop them directly, but some of the

victims may be accessed again. So the main time cost of

evicting clean blocks is the SMR time spent on loading these

hot blocks back into the cache. According to the definition of

𝐴𝑅𝑆 (), 𝐴𝑅𝑆 (𝑆𝑐𝑙𝑒𝑎𝑛) is the capacity that will not be accessed.

The average time spent on each random SMR read can be

taken for granted with a pre-measured value of 𝐿𝑟𝑒𝑎𝑑 because

the SMR read performance is stable (recall Table 2). In this

case, the clean blocks’ eviction overhead 𝑇𝑖𝑚𝑒 (𝑆𝑐𝑙𝑒𝑎𝑛) can
be expressed as Eq. 3.

𝑇𝑖𝑚𝑒 (𝑆𝑐𝑙𝑒𝑎𝑛) = 𝐿𝑟𝑒𝑎𝑑 × (|𝑆𝑐𝑙𝑒𝑎𝑛 | −𝐴𝑅𝑆 (𝑆𝑐𝑙𝑒𝑎𝑛)) (3)

The time cost of evicting a dirty block set 𝑆𝑑𝑖𝑟𝑡𝑦 is more

intuitive compared with the clean block eviction; it is the

consumed time of writing 𝑆𝑑𝑖𝑟𝑡𝑦 into the SMR disk. However,

the time overhead is not easy to estimate because of the

extremely unstable write performance of SMR disks (recall

Table 2). Therefore, we use a regression function 𝑅(), which
will be explained in detail in the following part, fitted by

multiple sets of experimental results as the estimation of the

SMR write overhead.

𝑇𝑖𝑚𝑒 (𝑆𝑑𝑖𝑟𝑡𝑦) = 𝑅(𝑆𝑑𝑖𝑟𝑡𝑦) (4)

Estimation of the band eviction time cost. The write
latency of SMR is unstable due to the fluctuated write am-

plification rate in RMW operations. But the total write cost

under the same write amplification rate should be stable. If

we refer to the number of blocks participating in the RMW

operation for a band as the Coverage of the band, the total
time cost of writing blocks with the same band coverage will

be similar to each other.

The measurement results in Fig. 10 (a) are the latencies

for all the served requests when the band coverage is 500,

1000, 1500, 2000, 2500, respectively. We can focus on the

length of the interval between the "latency" peak cluster and

the average continuous time of all the clusters. Each peak

cluster is probably made by the GC operation of SMR. The

more intensive the latency peak cluster happens, the lower

the GC efficiency is. For the 500 coverage, cache evictions

are more frequent to trigger the SMR’s GC than the 2500

coverage case. Every peak cluster of the 500 coverage case

is shorter than that of the 2500 coverage case, because the

more coverage in the SMR persistent buffer takes the more

time to GC. Figure 10 (b) gives the average write request

time cost in each coverage, in which the X axis is the band

coverage and the Y axis is the average I/O latency.

Observed from Figure 10 (b), it comes up with a linear

regression function from the five samples about the rela-

tionship of the band coverage and its write latency. The

regression function based on the SMR device we used is

𝑅(𝑥) = 0.728𝑥 + 436(𝑅2 = 0.9717), where 𝑥 is the write

coverage of band.

500

1000

L
at

en
cy

(m
s)

1500

2000

2k 4k 6k 8k 10k 12k 14k

Write requests elapsed

0

150

2500

(a) I/O Latencies

0 500
1000

1500

Band Coverage

0

500

1000

1500

2000

2500

3000

3500

4000

T
ot

al
L

at
en

cy
(m

s)

y=0.728x+436
R*R=0.9717

(b) Regression function

Figure 10. The regressive relationship between the con-

sumed SMR time and the to-be-written block count in one

band.

Assuming that 𝑆𝑑𝑖𝑟𝑡𝑦 is a collection of some selected𝑏𝑎𝑛𝑑𝑐𝑠 ,

i.e., 𝑆𝑑𝑖𝑟𝑡𝑦 = {𝑏𝑎𝑛𝑑𝑐𝑖 , 𝑏𝑎𝑛𝑑𝑐𝑗 , 𝑏𝑎𝑛𝑑𝑐𝑘 , ...}, the SMR overhead

of writing 𝑆𝑑𝑖𝑟𝑡𝑦 , i.e., 𝑅(𝑆𝑑𝑖𝑟𝑡𝑦), can be formulated as Eq. 5,

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1053

where 𝑏𝑎𝑛𝑑𝑐 ∈ 𝑆𝑑𝑖𝑟𝑡𝑦 , and 𝑁𝑢𝑚(𝑏𝑎𝑛𝑑𝑐) is the block number

of 𝑏𝑎𝑛𝑑𝑐 .

𝑅(𝑆𝑑𝑖𝑟𝑡𝑦) =
∑

𝑅(𝑁𝑢𝑚(𝑏𝑎𝑛𝑑𝑐)) (5)

Generality of CDC. CDC is designed to optimize the

cache space allocation for the underlying storage devices

with unbalance and unstable read/write performance, in-

cluding but not limited to SMR disks, as long as the cost of

evicting clean or dirty blocks can be quantified. In fact, CDC
is a universal cache space allocation method, not limited to

our proposed SAC; it can also be integrated with other cache

algorithms (e.g., MOST). Our experiments indicate that CDC
can adjust the cache resource allocation appropriately when

LRU or MOST is adopted for the dirty cache for SMR, with

the results of improving the performance by 20.4% for MOST

(see Section 6.3 and Table 5 for more).

CDC vs. HRC. Hit Ratio Curve (HRC) is a curve that

illustrate the relationship between the cache space and the

hit ratio for a given workload. However, the cache resource

allocation method based on HRC is not feasible for the SSD

cache upon SMR disks. There are mainly two reasons:

(a) The performance of SMR writing is much lower than

its reading and it usually fluctuates in a very large range.

HRC can only be used to improve the total cache hit ratio; it

does not consider the SMR writing factor and cannot make

the optimal decision to tradeoff between the hit ratio and

the SMR write amplification.

(b) Accurate HRCs can only be gotten for some simple

cache algorithms (e.g., LRU). The cache algorithms for SMR

should adopt a more complicated scheme (e.g., our proposed

SAC). For these SMR-oriented cache algorithms, it is hard to

get the accurate HRCs.

5 SMR Hardware Specification Detection
Most of the SMR disk products on the market shield the

user from internal technical details as a black box where

the information like the PB capacity and the band division

that are critical to the algorithm design are hidden. In SAC,

the PB capacity gives the upper limit of the cycle length to

avoid fragmentation, and the accurate map of band division

helps reduce the write amplification. So we provide a set of

universal methods to detect these key SMR features in this

section; these methods can be applied to most drive-managed

SMRs on the market.

5.1 Detection of PB Capacity
For an SMR disk, an interesting characteristic is that its PB

capacity does not appear as a fixed value when coupled with

different kinds of the workloads and environments (e.g., the

block size and the I/O depth settings) [1]. The reason lies

in that SMR stores the written data into the PB area, and

meanwhile records its information into the PBmetadata area;
as long as any one of the two area reaches the space limit, it

triggers the RMW operation (i.e., PB is considered as a full

status).

In this case, we provide a method to measure the accurate

PB capacity for a given SMR product and representative

application workloads. The detailed method includes two

steps:

Step 1. Forcing to Empty PB. PB is usually occupied

by some unknown size of dirty data, so we need to initiate

the PB space first to ensure it is empty. We assume 𝐶 is

an empirical value of PB capacity upper bound; 𝐶 may be

equal to the capacity of the whole SMR disk if we cannot get

an upper bound. This requires two operations: 1) Write the
LBA range from 0 to𝐶 in random order. This is to squeeze
out the old data in the PB, only leaving the data located in

LBA 0 to 𝐶 . 2) Write this LBA range in sequential order.
SMR will let these sequential data directly write back to the

band region and drop the old data in the PB, then the PB is

cleaned.

Step 2. Random Writing. After emptying PB, we do

random writing in the range from 0 to 𝐶 again to refill the

PB. Meanwhile, we monitor the IOPS and the writing data

amount. The IOPS initially stays high at the beginning, i.e.,

in the stage of sequential writing to PB. After a while, when

the PB is full and it begins to clean up the data, a sudden

drop of IOPS will be observed, e.g., 54th second in Fig. 11.

The written data amount before the sudden IOPS drop is the

PB capacity.

0 20 40 60 80 100

Time elapsed (sec)

0

500

1000

1500

2000

2500

3000

3500

IO
P

S

Figure 11. A sudden IOPS drop appears when PB is full

during performing random writes to a SMR disk.

Different written block size and the I/O depth setting lead

to different PB capacity of SMR drives, so this detection

method has to be re-conducted in the specific practical en-

vironment. As an example, we have made a series of exper-

iments covering the 4KB and 8KB block size and the I/O

depth from 1 to 32 based on a Seagate 8TB SMR drive. The

observed IOPS during Step 2 are recorded in Table 3. Under

the setting of 4KB block size and 1 I/O depth, IOPS stayed at

3156/s from the beginning and lasted for about 54 seconds,

then plummeted to 41/s. The total amount of blocks written

during the high throughput period is approximately 720 MB,

which means the PB capacity is about 720 MB in this case.

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1054

Table 3. PB capacity detection results with different work-

load characteristics and system settings.

Blksize I/O Depth IOPS PB Cap.

4KB 1 3156→ [54s]↘ 41 720MB

8KB 1 3268→ [58s]↘ 9 1450MB

4KB 32 2716→ [71s]↘ 225 723MB

8KB 32 2684→ [75s]↘ 229 1557MB

256KB 1 452→ [268]↘ 21 30.3GB

5.2 Detection of Band Division
Detecting the SMR band division is a bit complex because the

band size is usually not a constant in many SMR products.

For example, the band size of the SMR drive ST5000AS0011

decreases from 36 MB to 17 MB as the LBA grows [1]. In

the future, as SMR capacity continues to expand, there will

be a wider band range. It requires us to detect the band size

distribution of any given SMR drive.

Band Size Detection. Inspired by the band detection

method of Skylight [1], we can estimate the band size for a

given LBA. The detailed detection method is illustrated as

follows.

Band Size Detection for a Given LBA

1. We first select a target LBA range, which size is 2× PB size, around

the given LBA.

2. Randomly write the target LBA range in 4KB granularity, and the

total data amount is equal to the PB size to fill PB.

3. Write some data out of the target LBA range to trigger some RMW

operations for a few seconds.

4. Read all blocks with 1MB block size in this LBA range in the sequential

order.

After PB is filled with the data in the 2× PB size target LBA

range in step 2, the new written data in step 3 can trigger

some RMW operations and clear the data of some bands to

the SMR band region. In this case, the latency distribution

of the sequential reading in step 4 can identify a cleaned

band. For a band that is cleared in step 3, all its data will not

appear in PB and all located in the band region, so the read

latency will be constantly low. Otherwise, for a band that is

not cleared, the read operations cause the disk head to swing

back and forth between the PB and the band region and thus

exhibit high latencies due to the head seek time.

Taking the measured results in Fig. 12 as an example, the

band size near the space LBA = 0 of is observed to be about

40 MB. According to a series of measurements for different

target LBAs, we know that the band size range of the drive

ST8000AS0011 is about 15 ∼ 40MB.

Alternative Bands Division. In the practical implemen-

tation of SAC, the SMR band size is considered as a constant

value (e.g., 20 MB in our implementation), but not following

the varying size distribution (e.g., 40 ∼ 15 MB). The reason

lies in the following aspects:

1250
1260

1270
1280

1290
1300

1310
1320

1330
1340

1350
1360

1370
1380

1390
1400

1410
1420

1430
1440

1450

LBA (MiB)

0

100

200

300

400

500

la
te

nc
y

(m
s)

Figure 12. The interval of low-latency during sequential

reading indicates the size of a cleared band from PB.

1) The measurement of SMR band size distribution has

some errors, because the first and the last low latency re-

quests may be from the neighbor bands, and the prefetching

mechanism interferes with latency.

2) It brings heavy overhead to maintain an uneven band

size distribution in algorithms like SAC, and importantly,

the performance loss of the even band size distribution as-

sumption is not too much compared with the practical vary-

ing band size distribution. If we evict the cached blocks

of a 20-MB band, but not according to the practical band

size, the maximum write amplification rate is to be 4 (=
40𝑀𝐵 × 2 / 20𝑀𝐵), that occurs when this zone spans the

two largest bands. And in most case, the write amplification

rate is smaller.

6 Evaluation
This section will give a comprehensive evaluation for our

proposed SAC algorithm. After the experimental setup in-

troduced in Section 6.1, we conduct performance compari-

son experiments between SAC and other typical cache algo-

rithms for the write-only and read/write-mixed scenarios,

respectively in Sections 6.2 and 6.3. Then the experiments

to evaluate the impacts of SAC’s inner modules including

the strategy of TBS, the cycle length, and the alternative band
size in Sections 6.4, 6.5, and 6.6, respectively.

6.1 Experimental Setup
Our experiments were driven by ten real-world enterprise

I/O traces released by Microsoft Research in Cambridge [14]

summarized in Table 4. The last one, i.e., the long trace, is

a large trace that consists of previous traces and extends

the LBA range to 4TB. To this end, we copied each of these

traces for 18 times with shifted LBA offsets and then mixed

them all.

The experiments were performed in a CentOS Linux re-

lease 7.6.1810 (Core) based on the Kernel 4.20.13-1 environ-

ment, coupled with 4 cores Intel i7-3770 CPU @ 3.40GHz

and 14GB DRAM. All the measurements are based on the

Seagate 8TB SMR drive model ST0008AS0002 [18], of which

we have detected the hardware specification as described

in Section 5, and an 800GB PCIe SSD as the cache layer of

the hybrid storage in which the available cache size is set as

5‰ of the total capacity of the accessed SMR bands.

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1055

Table 4. Real-world trances used in the evaluations.

Trace Server Function Total Requests (×106) Write Percent Written LBA Range (GB) Accessed LBA Range (GB)
src Source control 14.0 83.2% 3.80 3.93

prn Print server 17.6 80.2% 20.22 20.26

ts Terminal server 4.2 74.1% 9.80 9.81

wdev Test web server 2.6 72.7% 4.71 4.73

mds Media server 2.9 70.4% 3.58 3.73

stg Web staging 6.0 68.2% 7.29 7.58

hm Hardware monitoring 8.9 67.3% 9.07 9.19

web Web/SQL server 9.6 46.4% 7.11 8.35

usr User home directories 12.8 27.9% 6.42 6.92

rsrch Research projects 3.2 88.8% 17.7 17.7

long mixed 1481.4 65.7% 3894.3 4332.8

Moreover, based on the CMR disk hardware, we imple-

mented an accurate SMR Emulator, in which we integrated

the known SMR working mechanisms and the specifications

(e.g., band size distribution and PB size), for the convenience

of observing how a cache algorithm affects the inner behav-

ior of the SMR drive. It can provide SMR’ inner information

including the triggered RMW operation count and the write

amplification rates. Note that in this section, all the experi-

mental result of consumed I/O time were based on the real

SMR device, while the RMW counts and write amplification

rates were obtained from the SMR emulator.

6.2 Performance of Write-only Workloads
In this part, we evaluate the performance of the SSD-SMR

hybrid storage managed by SAC and the competitors (e.g.,

LRU and MOST), respectively, under the write-only scene

which is critical for SMR disks. The consumed I/O time of

running the first 100 million write requests of the long trace

on real SMR device of the three cache algorithms is shown

in Fig. 13. For the three algorithms, their I/O time spent on

SSD layer are quite close, but their I/O time on SMR is far

different. Specifically, SAC achieves up to a 11.4× speedup

on the SMR I/O time and 7.5× speedup of total I/O time

compared with LRU; compared with MOST, the speedups of

SAC are 1.6 and 1.4 times for the SMR I/O time and the total

I/O time, respectively.

Note that the reason that SAC reduce the SMR I/O time

compared with MOST lies in two aspects: 1) SAC achieves

a lower cache miss rates (i.e., 14.5% vs. 21.7%) to reduce the

request count of SMR processing. 2) The average throughput

of the SMR disk for SAC is measured to be 15.4𝑀𝐵/𝑠 , while
that of MOST is only 9.5𝑀𝐵/𝑠 . This is because SAC leads to a

lower SMR write amplification rates (see the below emulator

experimental results in Fig. 14 (b)).

In addition, we made some further experiments based on

the SMR emulator to observe the inner write amplification

rates and RMW counts. When the coupled SSD cache size

ranges from 16 GB to 40 GB, the cache miss rates, the SMR

write amplification rates, and the trigger RMW operation

counts when performing the same write-only workload are

given in Fig. 14.

LRU MOST SAC
0

2500

5000

7500

10000

I/
O

T
im

e
(s

ec
)

2257 2483 2319

6148

3782

43171

Time in SMR Time in SSD

Figure 13. The consumed I/O time for 100 million write

requests.

The cache miss rates of SAC under all kinds of cache

size settings are between LRU and MOST though, SAC’s

write amplification rates and RMW counts are always the

least, making SAC achieve the best performance among the

three algorithms. The RMW count which is highly related

to the consumed I/O time (less is better), SAC has a number

nearly half of MOST; this is why SAC has much better write

performance at the SMR end.

6.3 Performance of Read/Write-mixed Workloads
In this part, as Table 5 shows, we evaluated the performance

of the SSD-SMR hybrid storage based on practical SMR prod-

ucts under a read/write-mixed workload coupled with dif-

ferent cache algorithms. The workload contains the first 100

million read and write requests of the long trace; the ratio of

the read and the write requests is 3.5:6.5. The competitors of

SAC include LRU, MOST, and MOST+CDC.
MOST+CDC means a cache scheme in which MOST is

adopted to manage the dirty cache region, LRU is used to

manage the clean cache region, and the Clean/Dirty Com-

parator (CDC) model of SAC are utilized to balance the cache

resources of these two regions. MOST+CDC was evaluated

here to exhibit CDC’s acceleration on other cache algorithms

(e.g., MOST).

First of all, according to Table 5, SAC outperforms all the

other algorithms in terms of the overall performance, i.e.,

having the shortest I/O time to finish the all the requests in

40.8𝐾 seconds, which is 66% less than LRU (119.3𝐾 seconds)

and 33% less than MOST (60.7𝐾 seconds).

Second, MOST+CDC helps the original MOST to reduce

17% total time cost, indicating the CDC module can improve

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1056

16G 24G 32G 40G

(a) Miss Rates

0

10

20

30

40

50

M
is

s
R

at
es

16G 24G 32G 40G

(b) Write Amplification Rates

0

5

10

15

20

W
A

R
at

es

135.5 137.2 131.1 124.3

16G 24G 32G 40G

(c) RMW Operation Count

0

50

100

150

R
M

W
C

nt
.

(1
0e

3)

1437.8 981.3 795.1 642.3

LRU

MOST

SAC

Figure 14. Results based on the emulated SMR disk for write-only workloads.

Table 5. Cache scheme performance in R-W hybrid mode.

Cache Scheme

Metrics Cache Hit Ratio(%) Evicted Blks. (×106) Time Consuming(×103𝑠𝑒𝑐)
total read write clean dirty total in ssd read smr write smr

SAC 60.7 29.9 77.7 27.4 14.6 40.8 2.8 34.8 3.2
LRU 63.8 32.7 81.1 24.4 14.4 119.3 2.8 46.9 69.6

MOST 51.5 0 80.3 38.3 11.4 60.7 1.8 57.1 1.8

MOST + CDC 58.7 29.9 74.8 27.5 16.6 50.4 2.9 44.5 3.0

other band-based cache algorithms by fitting in the SMR char-

acteristics. Compared with MOST, CDC cuts down the num-

ber of clean block eviction from 38.3𝑀 to 16.6𝑀 , but slightly

increasing the dirty blocks eviction count from 11.4𝑀 to

16.6𝑀 . This result indicates that CDC intentionally protects

the read cache according to the eviction costs estimated in

real time to promote the overall performance.

6.4 Impacts of Target Band Selection Schemes
In this part, we will evaluate the impacts of different target

band selection strategies including P-Decided (PD),A-Decided
(AD), and Actual Released Space (ARS), which aims to reduce

the RMW count and is SAC’s default strategy. PD means

selecting the band with the lowest popularity in each cycle;

and AD is to select the band containing the most cached

blocks number, similar to MOST.

As Fig. 15 illustrates, PD achieves the lowest cache miss

rates, but the largest write amplification rate; its performance

is the worst due to the most RMW operation count. AD is

almost the opposite to PD in terms of both miss rates and

write amplification rates. Among the three strategies, ARS

is the best one because it is designed to reduce RMWs and it

actually achieves a much less one compared with the others.

6.5 Impacts of Cycle Length
The cycle length is critical for the Cycle-Drive Writeback

(CDW)module of SAC; it has great impacts on the SMRwrite

amplification rates. We set the default cycle length the same

as the SMR PB capacity. Fig. 16 shows the results driven by

the first 250 million of the long trace, where the cycle length

ranges from 50% to 10 times of the default value.

PD AD ARS
(a) Miss Rates (%)

14.33

31.30

21.45

PD AD ARS
(b) WA Rates

37.2

3.8 3.1

PD AD ARS
(c) RMW Counts

255K

61K
34K

Figure 15. Impacts of target band selection strategies.

We can see from Fig. 16 (b) that the write amplification

rates are close for the 0.5x and 1x default cycle length settings,

and it has a significant rising steep slope at the 2x length.

The reason lies in that the fragmenthation appears more

frequently when the cycle length is bigger than PB capacity

(recall Section 3). Observed from Fig. 16 (c), we know that the

lowest RMW count is obtained when the cycle length is 1x

PB size. It means the cycle length close to the PB capacity is

the best for performance, which also reflect the importance

of detecting the hardware PB size (see Section 5.1).

6.6 Impacts of Alternative Band Size
Recall Section 5.2 that we use the alternative band division

method (i.e., the even band size distribution assumption) to

deal with the lack of accurate band distribution information

of drive-managed SMR disks and avoid high overhead. In this

part, we conducted experiments based on the SMR emulator

with different alternative band sizes, ranging from 10 MB to

600 MB. As Fig. 17 shows, we see the lines of each metrics are

relatively flat in the range of 20 MB ∼ 100 MB. The results

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1057

0.5 1 2 5 10
(a) Miss Rates

M
is

s
R

at
es

(%
)

21.1 21.3 21.0

28.2 27.921.5 21.7 21.5

32.1 31.9250 million reqs

375 million reqs

0.5 1 2 5 10
(b) Write Aplification

W
A

R
at

es

2.84 2.84

3.44
3.70

3.50

3.14 3.14

3.70

4.57
4.36

0.5 1 2 5 10
(c) RMW Operation Count

R
M

W
C

nt
(1

0e
3)

19.1 19.0
22.9

34.7 32.534.1 34.0
40.2

77.2
72.9

Figure 16. Experimental results of SAC underdifferent cycle lengths ranging from 0.5x to 10x PB size.

10 20 40 100 200 600
(a) Miss Rates

M
is

s
R

at
es

(%
)

21.3 21.1 20.5 19.1 18.0 17.0

47.5 47.4 47.0 46.1 45.3 44.6

250 million reqs

375 million reqs

10 20 40 100 200 600
(b) Write Aplification

W
A

R
at

es
3.73

2.84 2.48 2.60
3.11

3.87

4.08
3.14 2.79 3.01

3.53
4.41

10 20 40 100 200 600
(c) RMW Operation Count

R
M

W
C

nt
(1

0e
3)

25.3
19.0 16.2 15.7 17.4 20.2

44.8

34.0
29.8 30.4 33.7

40.0

Figure 17. Impacts of different alternative band sizes ranging from 2MB to 600MB.

exhibit that the alternative band size setting does not affect

the system performance much in a wide range.

7 Related Work
A. Aghayev et al. [1] proposed a methodology to reveal key

properties of drive-managed SMR drives including the details

about the persistent write buffer, the band size, etc., which

helps a lot in SMR-related system optimization.

Optimization of SMR-basedHybrid Storage. C.Wang

et al. [20] designed a write-only cache scheme called PORE
based on the MOST algorithm for SSD-SMR hybrid storage,

but did not support the common read/write-mixed scenarios

and did not consider the fragmentation issues. W. Xiao et al.

[24] implemented three caching algorithm in Flashcache in-

cluding MOST, LRU, FIFO. The cache layer does not actively

cache read request data. X. Xie et al. [25] proposed “Ghost

Cache” module to filter out less frequently used data and

prevent them from writing to the cache which can improve

life of SSD device.

Optimization of SMR Drive. Ma et al. [11] designed to

use Flash-based SSDs to replace the persistent write buffer

located on tracks and put forward an cache algorithm to

manage the write buffer based on the knowledge of band

distribution, named MOST. T. Yang et al. [26] proposed an

improved STL rule for persistent buffer inner SMR drive,

which allow dirty blocks whose destination address is the

last track of the band to be written back directly from the

persistent buffer without RWM operation. C. Ma et al. [10]

proposed a built-in flash-cache with fast cleaning for SMR

which is aimed to speed up the drive-manage SMR device and

to optimize I/O latency by replacing the magnetic recording

media of persistent buffer to a flash media. W. He et al. [5]

brought a novel mapping method to locate the data first in

tracks that are not overlapped with each other, sacrificing

space efficiency to gain higher performance. Kadekodi et al.

[8] raised an interface scheme named Caveat-Scriptor that
supports to write anywhere based on static mapping.

8 Conclusion
For the emerging SMR-based high-density disks which are

in the trouble of write amplification, we propose a new

software/hardware co-design cache algorithm called SAC,
considering three important facts including the SMR inner

hardware structure and schemes, the tradeoff between pop-

ularity and SMR write amplification, and the clean/dirty

cache regions’ self-adjustment according to the real-time

SMR read/write performance and workload characteristics.

The new features of SAC make it achieve much higher per-

formance for the SMR- based hybrid storage compared with

classical cache algorithms like LRU and MOST. Also, the

Clean/Dirty Comparator (CDC) module in SAC is an indepen-

dent clean/dirty cache balancer for SMR-based high-density

disks; it can effectively work well with other cache algo-

rithms (e.g., MOST) to achieve better performance through

adjusting the eviction tilt in real-time.

Acknowledgments
This work is supported by the National Key Research and

Development Program of China (No. 2018YFB1004401), Na-

tional Natural Science Foundation of China (No. 61972402,

61732014, and 61972275), Beijing Natural Science Foundation

(No. 4172031), and open research program of State Key Lab-

oratory of Computer Architecture, Institute of Computing

Technology, Chinese Academy of Science (No. CARCH201702).

The corresponding author of this paper is Yunpeng Chai (

ypchai@ruc.edu.cn).

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1058

ypchai@ruc.edu.cn
ypchai@ruc.edu.cn

References
[1] Abutalib Aghayev, Mansour Shafaei, and Peter Desnoyers. 2015. Sky-

light—a window on shingled disk operation. ACM Transactions on
Storage (TOS) 11, 4 (2015), 16.

[2] Shobana Balakrishnan, Richard Black, Austin Donnelly, Paul England,

Adam Glass, David Harper, Sergey Legtchenko, Aaron Ogus, Eric

Peterson, and Antony IT Rowstron. 2014. Pelican: A Building Block

for Exascale Cold Data Storage.. In OSDI. 351–365.
[3] Yuval Cassuto, Marco AA Sanvido, Cyril Guyot, David R Hall, and

Zvonimir Z Bandic. 2010. Indirection systems for shingled-recording

disk drives. In Mass Storage Systems and Tec hnologies (MSST), 2010
IEEE 26th Symposium on. IEEE, 1–14.

[4] Dropbox 2018. Extending Magic Pocket Innovation

with the first petabyte scale SMR drive deployment.

https://blogs.dropbox.com/tech/2018/06/extending-magic-pocket-

innovation-with-the-first-petabyte-scale-smr-drive-deployment/.

[5] Weiping He and David HC Du. 2014. Novel Address Mappings for

Shingled Write Disks.. In HotStorage.
[6] Intel P3500 2017. Intel Solid-State Drive DC P3500 Series: Product

Specification. http://www.intel.com/content/www/us/en/solid-state-

drives/ssd-dc-p3500-series-product-specification.html.

[7] S. Jiang and X. Zhang. 2002. LIRS: An Efficient Low Inter-reference

Recency Set Replacement Policy to Improve Buffer Cache Performance.

In Proceeding of 2002 ACM SIGMETRICS.
[8] Saurabh Kadekodi, Swapnil Pimpale, and Garth AGibson. 2015. Caveat-

Scriptor: Write Anywhere Shingled Disks.. In HotStorage.
[9] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H Noh, Sang Lyul

Min, Yookun Cho, and Chong Sang Kim. 1999. On the existence of a

spectrum of policies that subsumes the least recently used (LRU) and

least frequently used (LFU) policies. In ACM SIGMETRICS Performance
Evaluation Review, Vol. 27. ACM, 134–143.

[10] Chenlin Ma, Zhaoyan Shen, Lei Han, Renhai Chen, and Zili Shao. 2019.

FC: Built-in flash cache with fast cleaning for SMR storage systems.

Journal of Systems Architecture 98 (2019), 214–220.
[11] Wenjian Ma, Liuying abd Xiao, Huanqing Dong, Zhenjun Liu, and

Qiang Zhang. 2016. MOST: A High Performance Hybrid Shingled

Write Disk System. In Proceedings of the 22nd National Conference of
Information Storage. CCF.

[12] N. Megiddo and D. Modha. 2003. ARC: a Self-tuning, Low Over-head

Replacement Cach. In Proceedings of the 2nd USENIX Symposium on
File and Storage Technologies (FAST’03). San Francisco, CA.

[13] Micron 9100 2017. Micron 9100 PCIe NVM SSD.

https://www.micron.com//̃media/documents/

products/product-flyer/9100_ssd_product_brief.pdf.

[14] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2008.

Write off-loading: Practical power management for enterprise storage.

ACM Transactions on Storage (TOS) 4, 3 (2008), 10.

[15] David Reinsel, John Gantz, and John Rydning. 2018. The digitization

of the world: from edge to core. Framingham: International Data
Corporation (2018).

[16] Samsung PM1725 2017. Samsung Enterprise SSD MZPLK3T2HCJL

(PM1725). http://www.samsung.com/semiconductor/products/flash-

storage/enterprise-ssd/MZPLK3T2HCJL?ia=832.

[17] Seagate 2015. Seagate Archive HDD Product Manual:

ST5000AS0011,ST5000AS0001. http://www.seagate.com/files/www-

content/support-content/enterprise-servers-storage/nearline-

storage/archive-hdd/_shared/masters/archive-sata-hdd-

%20100743737-product-manual.pdf.

[18] Seagate 2016. Seagate Archive HDD Product Manual:

ST6000AS0002,ST800AS0002. http://www.seagate.com/www-

content/product-content/hdd-fam/seagate-archive-hdd/en-

us/docs/100757960h.pdf.

[19] Christoph Vogler, Claas Abert, Florian Bruckner, Dieter Suess, and Dirk

Praetorius. 2016. Heat-assisted magnetic recording of bit-patterned

media beyond 10 Tb/in
2
. Applied Physics Letters 108, 10 (2016), 102406.

[20] Chunling Wang, Dandan Wang, Yiran Cao, and Chao Wang. 2017.

Partially Open Region for Eviction (PORE): A SMR-oriented Cache

Framework. https://github.com/wcl14/smr-ssd-cache.

[21] YaoWang and RH Victora. 2013. Reader design for bit patterned media

recording at 10 Tb/in
2
density. IEEE Transactions on Magnetics 49, 10

(2013), 5208–5214.

[22] Dieter Weller, Gregory Parker, Oleksandr Mosendz, Eric Champion,

Barry Stipe, XiaobinWang, Timothy Klemmer, Ganping Ju, andAntony

Ajan. 2014. A HAMR Media Technology Roadmap to an Areal Density

of 4 Tb/in
2
. IEEE transactions on magnetics 50, 1 (2014), 1–8.

[23] Wikipedia contributors. 2019. Pearson correlation coefficient —

Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index
.php?title=Pearson_correlation_coefficient&oldid=908824482 [Online;

accessed 3-August-2019].

[24] Wenjian Xiao, Huanqing Dong, Liuying Ma, Zhenjun Liu, and Qiang

Zhang. 2016. HS-BAS: A hybrid storage system based on band aware-

ness of Shingled Write Disk. In 2016 IEEE 34th International Conference
on Computer Design (ICCD). IEEE, 64–71.

[25] Xuchao Xie, Liquan Xiao, Xiongzi Ge, and Qiong Li. 2018. SMRC:

An endurable SSD cache for host-aware shingled magnetic recording

drives. IEEE Access 6 (2018), 20916–20928.
[26] Tianming Yang, Haitao Wu, Ping Huang, and Fei Zhang. 2017. A

Shingle-Aware Persistent Cache Management Scheme for DM-SMR

Disks. In 2017 IEEE International Conference on Computer Design (ICCD).
IEEE, 81–88.

[27] Yuanyuan Zhou, Zhifeng Chen, and Kai Li. 2004. Second-level buffer

cache management. IEEE Transactions on parallel and distributed sys-
tems 15, 6 (2004), 505–519.

[28] Jian-Gang Zhu, Xiaochun Zhu, and Yuhui Tang. 2008. Microwave

assisted magnetic recording. IEEE Transactions on Magnetics 44, 1
(2008), 125–131.

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1059

https://en.wikipedia.org/w/index.php?title=Pearson_correlation_coefficient&oldid=908824482
https://en.wikipedia.org/w/index.php?title=Pearson_correlation_coefficient&oldid=908824482

A Artifact Appendix
A.1 Abstract
Our artifact contains a user-mode cache system which in-

cludes some cache algorithms including SAC and an SMR

emulator module. The artifact supports and validates all the

results of this paper. All the source codes are available on

Github. This appendix describes the HW/SW dependencies,

the dataset, the experiment workflow, and the evaluation.

A.2 Artifact check-list (meta-information)
• Algorithm: Cache algorithm, e.g. SAC, LRU, MOST.
• Program: Source code in C/C++.
• Compilation: GCC.
• Data set: All trace files are publicly downloaded on
Google Drive.

• Run-time environment: Verified onCentOS Linux ver-
sion 7.6.1810 (core) and expected to work correctly in
other Linux distributions.

• Hardware: SSD, SMR or regular HDD for emulation.
• Run-time state: I/O intensive.
• Execution:
• Metrics: See section A.6.
• Output: Real-time print on standard output.
• How much disk space required (approximately)?: For
testing real disk I/O, 100GB for the small workloads,
and 6TB for the big workload; For no-disk I/O, no disk
space required.

• How much time is needed to prepare workflow (ap-
proximately)?: It needs to download 3GB trace files.

• How much time is needed to complete experiments
(approximately)?: For testing real disk I/O, tens ofmin-
utes for the smallworkloads, and several hours for the
big workload; For no-disk I/O, a fewminutes required.

• Publicly available?: Yes
• Code licenses: GNU General Public License Version 3
• Artifact DOI: 10.5281/zenodo.3605763

A.3 Description
A.3.1 How delivered
The entire SAC project including source code, test scripts, and

benchmark datasets can be obtained on Github: https://github.c
om/dcstrange/sac.

A.3.2 Hardware dependencies
- The Seagate 8TB SMR drive model ST0008AS0002 is recom-

mended (but is optional). We still provide the SMR emulator

module in the source code to enable experimenters to per-

form experiments on regular HDDs. Furthermore, if you just

need to inspect the specific metrics (e.g. write amplification,

RMW count, and cache hit rates) and are careless of the I/O

time, it is recommended to use the —no-real-io flag option

in command line, in which case, you don’t need to deploy

any HDD.

- An SSD device (or use a memory file or Ramdisk instead) is

required to be the cache layer of the SMR, and it is recom-

mended to reserve 40GB of available capacity.

A.3.3 Software dependencies
- The SAC project has been tested on CentOS Linux release

7.6.1810 (Core) based on Kernel 4.20.13-1 environment and

is expected to run correctly in other Linux distributions.

- FIO benchmark required.

A.3.4 Data sets
- All trace files are publicly downloaded on the Google Drive,

follow the link

https://drive.google.com/drive/folders/1zwZYwGB9PbuqA
s3wlIE4cpIrYkdgUtYB?usp=sharing.
Download all the trace files to the project directory traces/.
If the link fails, get the latest location from the project Github.

- We provide 11 trace files based on enterprise applications

released by Microsoft Research in Cambridge. Users are very

welcome to perform other datasets using the —workload-file
[FILE] option in command line.

A.4 Installation
Clone the SAC project from Github and compile the source code:

$ git clone https://github.com/dcstrange/sac.git
$ cd sac/ && make

It generates the binary file sac, and then you can test with

different options without recompiling. See the README.md of SAC

Github project for more detail.

A.5 Experiment workflow
Once you have the executable file sac, you need to give the op-

tion parameters for testing, and the options include the cache and

SMR device file, the running workload, emulator (use or not), etc.

There are the steps to prepare, decide the test purpose, and run the

experiment.

- Preliminary. Before the test, you need to ensure that the SSD

and SMR device files are present, and set the files path to the

option —cache-dev and —smr-dev. If you don’t have an SMR

device, you still can use a regular HDD device file instead

and use the SMR emulator module. Please for sure you have

the permission to access the files, otherwise, you will get the

error information like errno:13.

- Example 1. Big dataset and real disk I/O
$./sac —cache-dev FILE —smr-dev FILE —workload
11 —algorithm SAC
For the typical test on SSD-SMR hybrid storage, run the this

command which will run the workload number 11 (the long
trace) for 100 million requests in read and write mix mode,

and using the SAC cache algorithm.

Also, we provide other comparison cache algorithms in-

cluding LRU, MOST, and MOST with CDC. Change the

—algorithm option to test other algorithms, such as —algorithm
LRU.

- Example 2. Small dataset and write-only mode
$./sac —cache-dev FILE —smr-dev FILE —algorithm
SAC —workload 5 —workload-mode W
If you need the workload running in write-only mode, you

should add the option —workload-mode W which will only

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1060

https://github.com/dcstrange/sac
https://github.com/dcstrange/sac
https://drive.google.com/drive/folders/1zwZYwGB9PbuqAs3wlIE4cpIrYkdgUtYB?usp=sharing
https://drive.google.com/drive/folders/1zwZYwGB9PbuqAs3wlIE4cpIrYkdgUtYB?usp=sharing

Output list of Emulator Description

PB_read_blks Number of blocks read from the PB

PB_write_blks Number of blocks write to the PB

SMR_read_blks Number of blocks read from SMR emulator

PB_write_hits Number of blocks write hit in the PB

CG_collect_blks Number of blocks get CG in the PB

RMW_cnt Total RMW trigger count

CG_bandsize (Byte)) Total size of the bands involved in the GC

WA_avg Average write amplification of the test

execute write requests in the trace file. There are three op-

tional value of —workload-mode, they are W for write-only
mode, R for read-only mode, and RW for read-write mix mode.

- Example 3. Use emulator instead of the SMR drive
$./sac —cache-dev FILE —smr-dev FILE —workload 5
—workload-mode W —use-emulator
We enable you to verify the SAC and other cache algorithms

without a SMR drive. With the option —use-emulator, the
programwill emulate the behavior of the STL (Shingle Trans-

lation Layer) on the regular HDD you specify. The SMR em-

ulator module will then output the information about the

I/O time, write amplification, RMW counts, etc.

- Example 4. Quick verification without real disk I/O
$./sac —algorithm SAC —workload 5 —use-emulator
–no-real-io
This command can be used to quickly verify the effectiveness

of a cache algorithm, and its performance will be reflected

from the results of the SMR emulator where the most critical

indicator is RMW trigger count. Note that, this commandwill

not generate the real disk I/O due to the option —no-real-io
which discards the request before it is sent to the device,

while the metadata structure of the cache algorithm and

emulator still running in memory. In this case, your test

environment does not need to deploy the SSD and the SMR

devices, nor does it need to specify the —cache-dev and

—smr-dev.

A.6 Evaluation and expected result
All (intermediate) results are printed on standard output. It is rec-

ommended to redirect to a local file when testing in batch. The

following output list is performance metrics when the test com-

pleted.

Output list of SAC project Description

totalreqNum Number of requests completed.

read_req_count Number of read requests.

write_req_count Number of write requests.

hitnum Requests hit in cache.

hitnum_r Read requests hit in cache.

hitnum_w Write requests hit in cache.

read_ssd_blocks Number of blocks read from SSD

flush_ssd_blocks Number of blocks write to SSD

read_hdd_blocks Number of blocks read from SMR

flush_dirty_blocks Number of dirty blocks evict from SSD

flush_clean_blocks Number of clean blocks evict from SSD

total_run_time (sec) Total running time of the test

time_read_ssd (sec) Total I/O time to read the SSD device

time_write_ssd (sec) Total I/O time to write the SSD device

time_read_smr (sec) Total I/O time to read the SMR device

time_write_smr (sec) Total I/O time to write the SMR device

If you run the test with SMR emulator module, you will see

extra output metrics from the emulator, the following output list is

performance metrics given by the emulator, in which the RMW_cnt
is the most critical indicator because it is always the most time-

consuming behavior in SMR.

A.7 Experiment customization
Uses are allowed to test their customized cache algorithm. It is

required to add the algorithm file to the directory strategy/. See
more detail in the project user guide UserCustomizeGuide.md.

A.8 Notes
Before testing the real SMR drive, you need to force clean the

PB area of the SMR, otherwise the remaining data will affect the

performance. We provide the PB cleaning script in the project

scripts/smr-pb-forceclean.sh, run
$./smr-pb-forceclean.sh [DEVICE FILE]
But be careful NOT to use this script in any production environ-

ment, it will overwrite the data on the disk.

If any resource link or path fails, get the latest location from the

project Github.

A.9 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.html
• http://cTuning.org/ae/reviewing-20190109.html
• https://www.acm.org/publications/policies/artifact-review-
badging

Session 12A: Storage — Cache is the
answer, what is the question?

ASPLOS’20, March 16–20, 2020, Lausanne, Switzerland

1061

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Write Amplification Challenge of SMR Disks
	2.2 Challenges of Existing Cache Algorithms

	3 Principles for Designing Efficient SMR-oriented Cache Algorithms
	4 Algorithm Design of SAC
	4.1 Overview
	4.2 Cycle-Driven Writeback
	4.3 Target Bands Selection
	4.4 Clean/Dirty Comparator

	5 SMR Hardware Specification Detection
	5.1 Detection of PB Capacity
	5.2 Detection of Band Division

	6 Evaluation
	6.1 Experimental Setup
	6.2 Performance of Write-only Workloads
	6.3 Performance of Read/Write-mixed Workloads
	6.4 Impacts of Target Band Selection Schemes
	6.5 Impacts of Cycle Length
	6.6 Impacts of Alternative Band Size

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization
	A.8 Notes
	A.9 Methodology

